Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives
نویسندگان
چکیده
All the leading cities in the world are slowly becoming inhospitable for human life with global warming playing havoc with the living conditions. Biomineralization of carbon dioxide using carbonic anhydrase (CA) is one of the most economical methods for mitigating global warming. The burning of fossil fuels results in the emission of large quantities of flue gas. The temperature of flue gas is quite high. Alkaline conditions are necessary for CaCO3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential. CAs must be stable in the presence of various flue gas contaminants too. The extreme environments on earth harbor a variety of polyextremophilic microbes that are rich sources of thermo-alkali-stable CAs. CAs are the fastest among the known enzymes, which are of six basic types with no apparent sequence homology, thus represent an elegant example of convergent evolution. The current review focuses on the utility of thermo-alkali-stable CAs in biomineralization based strategies. A variety of roles that CAs play in various living organisms, the use of CA inhibitors as drug targets and strategies for overproduction of CAs to meet the demand are also briefly discussed.
منابع مشابه
Decarbonization and Sequestration for Mitigating Global Warming
Mitigating the global warming greenhouse effect while maintaining a fossil fuel economy, requires improving efficiency of utilization of fossil fuels, use of high hydrogen content fossil fuels, decarbonization of fossil fuels, and sequestering of carbon and CO2 applied to all the sectors of the economy, electric power generation, transportation, and industrial, and domestic power and heat gener...
متن کاملتأثیر جنگلکاری با گونههای اکالیپتوس (Eucalyptus camaldulensis Dehnh.) و بادامکوهی (Amygdalus scoparia Spach.) بر ترسیب کربن و برخی از ویژگیهای فیزیکی و شیمیایی خاک (مطالعۀ موردی: پارک جنگلی دشت مازۀ دهدشت)
Today, climate change and global warming caused by the emission of greenhouse gases is a big challenge to the world, especially in arid and semi-arid area. Afforestation is the most effective strategy to absorb carbon dioxide in terrestrial ecosystems and reduce global warming of the earth. The purpose of this study is to evaluate the effects of planting Eucalyptus camaldulensis and Amygdalus s...
متن کاملCarboxysomal carbonic anhydrases: Structure and role in microbial CO2 fixation.
Cyanobacteria and some chemoautotrophic bacteria are able to grow in environments with limiting CO(2) concentrations by employing a CO(2)-concentrating mechanism (CCM) that allows them to accumulate inorganic carbon in their cytoplasm to concentrations several orders of magnitude higher than that on the outside. The final step of this process takes place in polyhedral protein microcompartments ...
متن کاملCodon-optimized Carbonic Anhydrase from Dunaliella species: Expression and Characterization
Carbonic anhydrases (CAs) has been focused as biological catalysis for CO2 sequestration process because it can catalyze the conversion of CO2 to bicarbonate. Here, codon-optimized sequence of α type-CA cloned from Duneliala species. (DsCAopt) was constructed, expressed, and characterized. The expression level in E. coli BL21(DE3) was better for codon-optimized DsCAopt than intact sequence of D...
متن کاملCarbonic Anhydrase from Porphyromonas Gingivalis as a Drug Target
Periodontitis originates from a microbial synergy causing the development of a mouth microbial imbalance (dysbiosis), consisting of a microbial community composed of anaerobic bacteria. Most studies concerning the treatment of periodontitis have primarily take into account the Gram-negative bacterium Porphyromonas gingivalis, because it is a prominent component of the oral microbiome and a succ...
متن کامل